两个平面垂直的性质定理

在空间中,如果两个平面相互垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。如果两个平面相互垂直,那么经过第一个平面内的一点作垂直于第二个平面的直线在第一个平面内等。

一个平面过另一平面的垂线,则这两个平面相互垂直。

几何描述:若a⊥β,a⊂α,则α⊥β

证明:任意两个平面关系为相交或平行,设a⊥β,垂足为P,那么P∈β

∵a⊂α,P∈a

∴P∈α

即α和β有公共点P,因此α与β相交。

设α∩β=b,∵P是α和β的公共点

∴P∈b

过P在β内作c⊥b

∵b⊂β,a⊥β

∴a⊥b,垂足为P

又c⊥b,垂足为P

∴∠aPc是二面角α-b-β的平面角

∵c⊂β

∴a⊥c,即∠aPc=90°

根据面面垂直的定义,α⊥β

上一篇:

下一篇:

最新数学

数学排行榜