复数怎么化成指数形式
根据欧拉公式:cosθ+isinθ=e^iθ,则复数可以写成z=re^iθ的形式,称为复数的指数形式,其中e是自然对数的底数,等于2.718281828……,是一个无理数。
能写成a+bi形式的数叫做复数,其中a和b都是实数,i是虚数单位,i^2=-1。在复数z=a+bi中,a=Re(z)称为实部,b=Im(z)称为虚部。当虚部等于零时,这个复数可以视为实数;当z的虚部不等于零时,实部等于零时,常称z为纯虚数。
复数有多种表示形式:代数形式、三角形式和指数形式等。代数形式:z=a+bi,a和b都是实数,a叫做复数的实部,b叫做复数的虚部,i是虚数单位,i^2=-1。三角形式:z=r(cosθ+isinθ)。r=√(a^2+b^2),是复数的模(即绝对值),θ是以x轴为始边,射线OZ为终边的角,叫做复数的辐角,辐角的主值记作arg(z)。