反三角与三角函数转换

三角函数都是三角函数的反函数。严格地说,准确地说,它们是三角函数在某个单调区间上的反函数。以反正弦函数为例,其他反三角函数同理可推。

反三角函数是一种基本初等函数。它是反正弦arcsin x,反余弦arccos x,反正切arctan x,反余切arccot x,反正割arcsec x,反余割arccsc x这些函数的统称,各自表示其正弦、余弦、正切、余切,正割,余割为x的角。

为了使单值的反三角函数所确定区间具有代表性,常遵循如下条件:

1、为了保证函数与自变量之间的单值对应,确定的区间必须具有单调性;

2、函数在这个区间最好是连续的(这里之所以说最好,是因为反正割和反余割函数是间断的);

3、为了使研究方便,常要求所选择的区间包含0到π/2的角;

4、所确定的区间上的函数值域应与整函数的定义域相同。这样确定的反三角函数就是单值的,为了与上面多值的反三角函数相区别,在记法上常将Arc中的A改记为a,例如单值的反正弦函数记为arcsin x。

上一篇:

下一篇:

最新知识点

知识点排行榜