复合函数知识点总结

不是任何两个函数都可以复合成一个复合函数,只有当Mx∩Du≠?时,二者才可以构成一个复合函数。下面是效文网小编整理的复合函数知识点总结,供参考。1.复合函数定义域

若函数y=f(u)的定义域是B,u=g(x)的定义域是A,则复合函数y=f[g(x)]的定义域是

D={x|x∈A,且g(x)∈B} 综合考虑各部分的x的取值范围,取他们的交集。

求函数的定义域主要应考虑以下几点:

⑴当为整式或奇次根式时,R的值域;

⑵当为偶次根式时,被开方数不小于0(即≥0);

⑶当为分式时,分母不为0;当分母是偶次根式时,被开方数大于0;

⑷当为指数式时,对零指数幂或负整数指数幂,底不为0(如,中)。

⑸当是由一些基本函数通过四则运算结合而成的,它的定义域应是使各部分都有意义的自变量的值组成的集合,即求各部分定义域集合的交集。

⑹分段函数的定义域是各段上自变量的取值集合的并集。

⑺由实际问题建立的函数,除了要考虑使解析式有意义外,还要考虑实际意义对自变量的要求

⑻对于含参数字母的函数,求定义域时一般要对字母的取值情况进行分类讨论,并要注意函数的定义域为非空集合。

⑼对数函数的真数必须大于零,底数大于零且不等于1。

三角函数中的切割函数要注意对角变量的限制。

注:设y=f(u)的最小正周期为T1,μ=φ(x)的最小正周期为T2,则y=f(μ)的最小正周期为T1*T2,任一周期可表示为k*T1*T2(k属于R+)

2.复合函数单调性

依y=f(u),μ=φ(x)的单调性来决定。即“增+增=增;减+减=增;增+减=减;减+增=减”,可以简化为“同增异减”。

⑴求复合函数的定义域;

⑵将复合函数分解为若干个常见函数(一次、二次、幂、指、对函数);

⑶判断每个常见函数的单调性;

⑷将中间变量的取值范围转化为自变量的取值范围;

⑸求出复合函数的单调性。

以上是网小编整理的复合函数知识点总结,希望对同学们的数学学习有帮助。

上一篇:

下一篇:

最新知识点

知识点排行榜