奇函数偶函数分别是什么
奇函数和偶函数是高中数学中的两种函数,判断函数的奇偶性是高中数学考试中常见的题型。那么奇函数和偶函数都是什么呢,下面小编为大家详细介绍一下,供大家参考。
奇函数
如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。
奇函数性质
1、在奇函数f(x)中,f(x)和f(-x)的符号相反且绝对值相等,即f(-x)=-f(x),反之,满足f(-x)=-f(x)的函数y=f(x)一定是奇函数。例如:f(x)=x^(2n-1),n∈Z;(f(x)等于x的2n-1次方,n属于整数)
2、奇函数图象关于原点(0,0)中心对称。
3、奇函数的定义域必须关于原点(0,0)对称,否则不能成为奇函数。
4、若F(X)为奇函数,定义域中含有0,则F(0)=0。
偶函数
一般地,如果对于函数f(x)的定义域内任意的一个x,都有f(x)=f(-x),那么函数f(x)就叫做偶函数。偶函数的定义域必须关于y轴对称,否则不能成为偶函数。
偶函数运算法则
1、两个偶函数相加所得的和为偶函数。
2、两个奇函数相加所得的和为奇函数。
3、一个偶函数与一个奇函数相加所得的和为非奇函数与非偶函数。
4、两个偶函数相乘所得的积为偶函数。
5、两个奇函数相乘所得的积为偶函数。
6、一个偶函数与一个奇函数相乘所得的积为奇函数。
7、奇函数一定满足f(0)=0(因为F(0)这个表达式表示0在定义域范围内,F(0)就必须为0)所以不一定奇函数有f(0),但有F(0)时F(0)必须等于0,不一定有f(0)=0,推出奇函数,此时函数不一定为奇函数,例f(x)=x^2。
8、定义在R上的奇函数f(x)必满足f(0)=0。
9、当且仅当f(x)=0(定义域关于原点对称)时,f(x)既是奇函数又是偶函数。
10、在对称区间上,被乘函数为奇函数的定积分为零。