人工智能要学哪些东西 有什么课程
要学习概率论、数理统计、矩阵论、图论、随机过程、最优化、神经网络、贝叶斯理论、支持向量机、粗糙集、经典逻辑、非经典逻辑、认知心理学。
人工智能需要学习什么
①机器学习的基础是数学,入门AI必须掌握一些必要的数学基础,但是并不是全部的数学知识都要学,只学工作上实际有用到的,比如是微积分、概率论、线性代数、凸优化等这些。
②数据分析里需要应用到的内容也需要掌握,但不是网上所说的从0开始帮你做数据分析的那种,而是数据挖掘或者说是数据科学领域相关的东西,比如要知道计算机里面怎么挖掘数据、相关的数据挖掘工具等。补足了以上数学和数据挖掘基本知识,才可以正式进行机器学习算法原理的学习。
③算法方面需要掌握一些基本的框架:python、spark、mllib、scikit-learning、pytorch、TensorFlow,数据方面需要懂得HQL、numpy、pandas,如果你本身是后台开发、app开发、数据分析、项目管理,则是一个学习算法的一个加分项。
④最后需要对人工智能有全局的认知,包括机器学习、深度学习两大模块,相关的算法原理、推导和应用的掌握,以及最重要算法思想。
人工智能主要是深度学习
想要学习人工智能,先要知道什么是机器学习。简单来说,机器学习就是教电脑怎样从数据中学习,然后做出决策或预测。对于真正的机器学习来说,电脑必须在没有明确编程的情况下能够学习识别模型。
你还需要知道什么叫做深度学习。深度学习简单来说,就是机器在学习过程中不断自主深化研究探索,达到能够代替人类的经验性工作。比如AlphaGo的围棋学习。
当然了,人工智能的学习少不了编程语言的学习包括Python、Java以及人工智能基础知识:ID3、C4.5、逻辑回归、SVM、分类器、等算法的特性、性质、和其他算法对比的区别等内容。另有工具基础知识:opencv、matlab、caffe等。