向量平行公式和垂直公式怎么写

a,b是两个向量,a=(a1,a2),b=(b1,b2)。a//b:a1/b1=a2/b2或a1b1=a2b2或a=λb,λ是一个常数。a垂直b:a1b1+a2b2=0。

共线向量基本定理

如果a≠0,那么向量b与a共线的充要条件是:存在唯一实数λ,使得b=λa。

证明:

1)充分性:对于向量a(a≠0)、b,如果有一个实数λ,使b=λa,那么由实数与向量的积的定义知,向量a与b共线。

2)必要性:已知向量a与b共线,a≠0,且向量b的长度是向量a的长度的m倍,即∣b∣=m∣a∣。那么当向量a与b同方向时,令λ=m,有b=λa,当向量a与b反方向时,令λ=-m,有b=λa。如果b=0,那么λ=0。

3)唯一性:如果b=λa=μa,那么(λ-μ)a=0。但因a≠0,所以λ=μ。

平面向量基本定理

如果两个向量a、b不共线,那么向量p与向量a、b共面的充要条件是:存在唯一实数对x、y,使p=xa+yb。

在平面直角坐标系中,分别取与x轴,y轴方向相同的两个单位向量i、j作为基底,a为坐标平面内的任意向量,以坐标原点O为起点作向量OP=a。有平面向量基本定理可知,有且只有一对实数x、y,使得

向量OP=xi+yj。

因此向量,a=xi+yj。

我们把实数(x,y)对叫做向量的坐标,记作:a=(x,y)。

显然,其中(x,y)就是点P的坐标。

向量OP称为点P的位置向量。

上一篇:

下一篇:

最新公式大全

公式大全排行榜