无穷等比数列求和公式

数列,a,aq,aq^2……aq^n。我们把|q|<1无穷等比数列称为无穷递缩等比数列,它的前n项和的极限才存在。S是表示无穷等比数列的所有项的和,这种无限个项的和与有限个项的和从意义上来说是不一样的,S是前n项和Sn当n→∞的极限,即S=a/(1-q)。

公式推导过程

设一个等比数列的首项是a1,公比是q,数列前n项和是Sn,当公比不为1时

Sn=a1+a1q+a1q^2+...+a1q^(n-1)

将这个式子两边同时乘以公比q,得

qSn=a1q+a1q^2+...+a1q^(n-1)+a1q^n

两式相减,得

(1-q)Sn=a1-a1q^n

所以,当公比不为1时,等比数列的求和公式为Sn=[a1(1-q^n)]/(1-q)

对于一个无穷递降数列,数列的公比小于1,当上式得n趋向于正无穷大时,分子括号中的值趋近于1,取极限即得无穷递减数列求和公式

S=a1/(1-q)

上一篇:

下一篇:

最新公式大全

公式大全排行榜