裂项相消是什么 有哪些公式

裂项相消是分解与组合思想在数列求和中的具体应用。裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的。

裂项相消公式

(1)1/[n(n+1)]=(1/n)- [1/(n+1)]

(2)1/[(2n-1)(2n+1)]=1/2[1/(2n-1)-1/(2n+1)]

(3)1/[n(n+1)(n+2)]=1/2{1/[n(n+1)]-1/[(n+1)(n+2)]}

(4)1/(√a+√b)=[1/(a-b)](√a-√b)

(5)n·n!=(n+1)!-n!

(6)1/[n(n+k)]=1/k[1/n-1/(n+k)]

(7)1/[√n+√(n+1)]=√(n+1)-√n

(8)1/(√n+√n+k)=(1/k)·[√(n+k)-√n]

裂项相消的例子

[例] 求数列an=1/n(n+1) 的前n项和.

解:设 an=1/n(n+1)=1/n-1/(n+1) (裂项)

则 Sn=1-1/2+1/2-1/3+1/4…+1/n-1/(n+1)(裂项求和)

= 1-1/(n+1)

= n/(n+1)

小结:此类变形的特点是将原数列每一项拆为两项之后,其中中间的大部分项都互相抵消了。只剩下有限的几项。

上一篇:

下一篇:

最新公式大全

公式大全排行榜