数学三角函数万能公式记忆 诱导公式有哪些
高中数学有很多的公式,小编在这里整理了一下三角函数的诱导公式,对公式不太敏感的同学们赶快学起来,相信会对数学学习有很大帮助。
万能公式之“奇变偶不变,符号看象限”
“奇、偶”指的是π/2的倍数的奇偶,“变与不变”指的是三角函数的名称的变化:“变”是指正弦变余弦,正切变余切。(反之亦然成立)“符号看象限”的含义是:把角α看做锐角,不考虑α角所在象限,看n*(π/2)±α是第几象限角,从而得到等式右边是正号还是负号。符号判断口诀:“一全正;二正弦;三两切;四余弦”。
这十二字口诀的意思就是说:第一象限内任何一个角的四种三角函数值都是“+”;第二象限内只有正弦是“+”,其余全部是“-”;第三象限内只有正切和余切是“+”,其余全部是“-”;第四象限内只有余弦是“+”,其余全部是“-”。
三角函数诱导公式中其他演变函数
同角三角函数的基本关系式中倒数关系:tanα*cotα=1sinα*cscα=1cosα*secα=1
商的关系:sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα
平方关系:sin^2(α)+cos^2(α)=11+tan^2(α)=sec^2(α)1+cot^2(α)=csc^2(α)
倒数关系对角线上两个函数互为倒数;商数关系六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。
三角函数中角的和差关系万能公式
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)
tan(α-β)=(tanα-tanβ)/(1+tanαtanβ)
三角函数之二倍角的正弦、余弦和正切公式
sin2α=2sinαcosα
cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
tan2α=2tanα/(1-tan^2(α))
半角的正弦、余弦和正切公式
sin^2(α/2)=(1-cosα)/2
cos^2(α/2)=(1+cosα)/2
tan^2(α/2)=(1-cosα)/(1+cosα)
tan(α/2)=(1―cosα)/sinα=sinα/1+cosα
三倍角的正弦、余弦和正切公式
sin3α=3sinα-4sin^3(α)
cos3α=4cos^3(α)-3cosα
tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))
三角函数的和差化积公式
sinα+sinβ=2sin((α+β)/2)*cos((α-β)/2)
sinα-sinβ=2cos((α+β)/2)*sin((α-β)/2)
cosα+cosβ=2cos((α+β)/2)*cos((α-β)/2)
cosα-cosβ=-2sin((α+β)/2)*sin((α-β)/2)
以上这些都是数学中常用的三角函数公式,希望对您有帮助!