和差化积公式大全及推导过程
和差化积公式,包括正弦、余弦、正切和余切的和差化积公式,是三角函数中的一组恒等式。和差化积二倍半,和前函数名不变;余弦稳正弦跳,余弦相减取负号,和差化积公式在数学中的应用很多,下面是效文网小编整理的和差化积公式大全及推导过程,希望对同学们的数学学习有帮助。
和差化积公式大全
sinα+sinβ=2sin[(α+β)/2]²cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]²sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]²cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]²sin[(α-β)/2]
sinα²cosβ=0.5[sin(α+β)+sin(α-β)]
cosα²sinβ=0.5[sin(α+β)-sin(α-β)]
cosα²cosβ=0.5[cos(α+β)+cos(α-β)]
sinα²sinβ=-0.5[cos(α+β)-cos(α-β)]
和差化积公式推导过程
首先,我们知道sin(a+b)=sina*cosb+cosa*sinb
sin(a-b)=sina*cosb-cosa*sinb
我们把两式相加就得到sin(a+b)+sin(a-b)=2sina*cosb
所以,sina*cosb=(sin(a+b)+sin(a-b))/2
同理,若把两式相减,就得到cosa*sinb=(sin(a+b)-sin(a-b))/2
同样的,我们还知道cos(a+b)=cosa*cosb-sina*sinb
cos(a-b)=cosa*cosb+sina*sinb
所以,把两式相加,我们就可以得到cos(a+b)+cos(a-b)=2cosa*cosb
所以我们就得到,cosa*cosb=(cos(a+b)+cos(a-b))/2
同理,两式相减我们就得到sina*sinb=-(cos(a+b)-cos(a-b))/2
这样,我们就得到了积化和差的四个公式:sina*cosb=(sin(a+b)+sin(a-b))/2
cosa*sinb=(sin(a+b)-sin(a-b))/2
cosa*cosb=(cos(a+b)+cos(a-b))/2
sina*sinb=-(cos(a+b)-cos(a-b))/2
有了积化和差的四个公式以后,我们只需一个变形,就可以得到和差化积的四个公式。
我们把上述四个公式中的a+b设为x,a-b设为y,那么a=(x+y)/2,b=(x-y)/2
把a,b分别用x,y表示就可以得到和差化积的四个公式:sinx+siny=2sin((x+y)/2)*cos((x-y)/2)
sinx-siny=2cos((x+y)/2)*sin((x-y)/2)
cosx+cosy=2cos((x+y)/2)*cos((x-y)/2)
cosx-cosy=-2sin((x+y)/2)*sin((x-y)/2)
以上就是效文网小编整理的和差化积公式大全及推导过程,更多数学公式请关注效文网。