三角函数二倍角公式

倍角公式,是三角函数中非常实用的一类公式。就是把二倍角的三角函数用本角的三角函数表示出来。在计算中可以用来化简计算式、减少求三角函数的次数,在工程中也有广泛的运用。

三角函数正弦二倍角公式

sin2α=2cosαsinα

推导:sin2A=sin(A+A)=sinAcosA+cosAsinA=2sinAcosA

拓展公式:sin2A=2sinAcosA=2tanAcosA^2=2tanA/[1+tanA^2] 1+sin 2A =(sinA+cosA)^2

三角函数余弦二倍角公式

余弦二倍角公式有三组表示形式,三组形式等价:

1.Cos2a=Cosa^2-Sina^2=[1-tana^2]/[1+tana^2]

2.Cos2a=1-2Sina^2

3.Cos2a=2Cosa^2-1

推导:cos2A=cos(A+A)=cosAcosA-sinAsinA=(cosA)^2-(sinA)^2=2(cosA)^2-1 =1-2(sinA)^2

三角函数正切二倍角公式

tan2α=2tanα/[1-(tanα)^2]

推导:tan2A=tan(A+A)=(tanA+tanA)/(1-tanAtanA)=2tanA/[1-(tanA)^2]

降幂公式:cosA^2=[1+cos2A]/2sinA^2=[1-cos2A]/2

三角函数和差公式

sin(α+β)=sinαcosβ+cosαsinβ

sin(α-β)=sinαcosβ-cosαsinβ

cos(α+β)=cosαcosβ-sinαsinβ

cos(α-β)=cosαcosβ+sinαsinβ

tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)

tan(α-β)=(tanα-tanβ)/(1+tanαtanβ)

上一篇:

下一篇:

最新公式大全

公式大全排行榜